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Abstract

Our understanding of fundamental organismal biology has been dispro-
portionately influenced by studies of a relatively small number of ‘model’
species extensively studied in captivity. Laboratory populations of model
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species are commonly subject to a number of forms of past and current
selection that may affect experimental outcomes. Here, we examine these
processes and their outcomes in one of the most widely used vertebrate
species in the laboratory — the zebra finch (Taeniopygia guttata). This
important model species is used for research across a broad range of fields,
partly due to the ease with which it can be bred in captivity. However
despite this perceived amenability, we demonstrate extensive variation in
the success with which different laboratories and studies bred their sub-
jects, and overall only 64 % of all females that were given the opportunity,
bred successfully in the laboratory. We identity and review several envi-
ronmental, husbandry, life-history and behavioural factors that poten-
tially contribute to this variation. The variation in reproductive success
across individuals could lead to biases in experimental outcomes and drive
some of the heterogeneity in research outcomes across studies. The zebra
finch remains an excellent captive animal system and our aim is to shar-
pen the insight that future studies of this species can provide, both to our
understanding of this species and also with respect to the reproduction of
captive animals more widely. We hope to improve systematic reporting
methods and that further investigation of the issues we raise will lead both
to advances in our fundamental understanding of avian reproduction as

well as to improvements in future welfare and experimental efficiency.

Introduction

There has been a recent call to improve on the report-
ing of information supporting empirical work con-
ducted on animals to improve evaluation and
interpretation, and facilitate the use of data in further
work (Kilkenny et al. 2010). In their paper, Kilkenny
et al. (2010) outlined the value of capturing contex-
tual information (e.g. animal backgrounds, housing
and husbandry conditions, sample sizes and selection
procedures) with a set of guidelines identifying 20
items that should be addressed in each publication.
One of the main underlying drivers of this effort was
to reduce the amount of clinical research using labo-
ratory animals (through the UK-based National Cen-
tre for the Replacement, Refinement and Reduction
of Animals in Research). However, in their paper
Kilkenny et al. (2010) also highlighted the opportuni-
ties that are missed when the context of a particular
study is not adequately communicated. While they
focused on all animal models, and particularly those
used in biomedical research, there were also some
clear messages for research in animal behaviour. The
issues raised by Kilkenny et al. (2010), and related
ones outlined below will result in biases in both
experimental selection of subjects and evolutionary
selection over both long and short timescales. Here,
we outline these issues by focusing solely on the zebra
finch (Taeniopygia guttata), although we consider that
our central message and recommendations will be
more broadly applicable to all species that have

already been, or are to be taken, from the wild into
the laboratory. Ultimately we hope our work raises an
awareness of the effects that the experimental context
may have on research outcomes. The issues on which
we focus are those that arise from the challenge of try-
ing to breed and maintain animals in a way that cap-
tures the extent of natural variation seen in wild
populations, but in a controlled environment. Our
findings are therefore also relevant to those managing
and designing captive breeding programmes for the
benefit of animal conservation (Lees & Wilcken
2009).

In two well-monitored populations of zebra finches
in the wild, reproductive attempts typically end in
failure. For natural nests that are vulnerable to preda-
tion, only 11-35% of clutches resulted in fledged
young (Zann et al. 1995; Griffith et al. 2008). Even
when predation was reduced through the provision of
nest boxes, only 53% of clutches resulted in fledged
offspring (Griffith et al. 2008). The variation in repro-
ductive success in the wild is an interesting question
in evolutionary ecology that must ultimately reflect
the individual optimization of many naturally and
sexually selected traits. Even in zebra finches that
have been brought into captivity, protected from
predators, living in standardized environmental con-
ditions and provided with an ad libitum supply of
resources, many individuals fail to reproduce. Zebra
finches are not the exception to the rule, as individu-
als in many animals species brought into captive
breeding programmes from wild populations fail to
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reproduce to recruitment (Lees & Wilcken 2009). This
failure presumably reflects some of the same selective
pressures to those in the wild, as well as additional
challenges of living in captivity. Wild animal popula-
tions continue to decline at alarming rates (Butchart
et al. 2010; Pereira et al. 2010), and captive breeding
is becoming an increasingly important tool to guard
against extinction in conservation and species man-
agement programmes. Thus, careful evaluation of
reproductive failure seen in extensive, multi-institu-
tional captive breeding programmes, such as the zebra
finch, and other model systems, can provide valuable
insight for the planning and design of conservation-
focused captive breeding programmes (Slade et al.
2014).

As well as being of interest to evolutionary ecolo-
gists, the variation in reproductive success among cap-
tive birds is worthy of attention due to the importance
of the zebra finch as a model system for captive
research across a broad range of areas in evolutionary
biology, physiology, animal behaviour, neurobiology
and genetics (Zann 1996; Griffith & Buchanan 2010).
It is important to understand how reproductive failure
in laboratory populations might affect the ability to
replicate studies across laboratories and indeed affect
research outcomes themselves. Not all individuals
respond similarly when given the opportunity and
resources to reproduce: some individuals quickly and
repeatedly reproduce regardless of the circumstances,
while others fail to reproduce at all over a lifetime in
captivity. The variance in reproductive success among
individuals within a single population has been the
explicit target of some studies (e.g. Alonso-Alvarez
et al. 2006; Bolund et al. 2009; McCowan et al.
2014). However, more generally it is ignored in
papers, and in practice could lead to the removal of
those individuals that do not reproduce well either
deliberately or inadvertently from populations and
experiments alike. Typically studies focused around
reproduction report the sample size of pairs that bred
and are included in specific analyses and only rarely is
a reference made to additional birds that were given
the opportunity but did not lay eggs (e.g. in Gorman
et al. 2005, 77% of females produced a clutch). Even
among those individuals that initiate a reproductive
attempt, there is variation in their ability to hatch eggs
and rear offspring through to independence. Only
rarely is this variation specifically the focus of analysis
or comment, even in papers that are focused on
aspects of reproductive behaviour or physiology. The
variation in these aspects of individual reproductive
success in domesticated populations will affect the
number of offspring that an individual leaves in
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subsequent generations. As a result, the underlying
determinants of this variation are subject to sexual,
natural and artificial selection. The variation among
individuals in reproductive success in captive popula-
tions will include biological traits such as individual
behavioural, genetic and physiological differences,
and those relating to the physical, nutritional and
social environment in which individuals are held.
Here, we introduce each key parameter in the context
of the zebra finch, before characterizing the variation
that exists across laboratory populations in reproduc-
tive success.

Part I. Biological Determinants of Variation in
Reproductive Success in Captivity

Genetic background

Zebra finches were first exported to Europe from Aus-
tralia in the 1870s for the pet trade (Sossinka 1970).
Since that time, captive-bred zebra finches have been
exported to North America and other parts of the
world for breeding (Zann 1996; Forstmeier et al.
2007) where they have subsequently been isolated to
an unknown and varying degree at local and national
levels. Domesticated zebra finches used in research in
Europe and North America are mostly derived from
populations maintained by amateur and professional
finch breeders who have bred these populations for
over a hundred years without an influx of wild-
caught birds from Australia (Zann 1996). Typically,
captive zebra finches have not been bred with the
intention of preserving genetic diversity and natural
behaviour, because these are not priorities for the
amateur and professional aviculturists who maintain
most of the zebra finches in the overall captive popu-
lation (even though some laboratories may manage
their stock to optimize these). Finch breeders are
partly driven by the creation of new morphs that are
selected by line breeding and backcrossing, to the
extent that there are now 30 recognized colour vari-
ants, from a single wild-type phenotype (Zann 1996).
Even ‘wild-type’ birds are bred for competitive show-
ing and judged against aesthetics and avicultural stan-
dards such as large size. As a result of this history,
domestic populations may have diverged genetically
from their wild conspecifics, through artificial selec-
tion imposed by aviculture, natural selection to cap-
tive conditions (Gilligan & Frankham 2003; Heath
et al. 2003), or through genetic drift (Woodworth
et al. 2002). Two studies have found morphological
difterences between wild and domesticated birds, and
between different subsets of the domesticated popula-
tion (Carr & Zann 1986; Forstmeier et al. 2007).
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Reassuringly, despite this morphological divergence
between populations, however, life-history trade-offs
between traits appear very similar between wild and
domestic birds held in captivity (Tschirren et al.
2009).

To date, just a single study has addressed genetic
divergence in the domesticated zebra finch. Forstme-
ier et al. (2007) used microsatellites to analyse 18 cap-
tive research populations and two wild populations.
All captive populations had lower allelic diversity
than the two wild populations sampled and many
populations showed strong differentiation from one
another, particularly between the populations from
different continents (Forstmeier et al. 2007). While it
does support the idea of fragmentation of the domes-
tic population, the limited neutral genetic divergence
between populations observed by Forstmeier et al.
(2007) does not exclude a higher degree of divergence
in functional traits across these domestic populations.

Although many researchers work with ‘wild-type’
birds, the presence of the colour variants in the back-
ground population, or directly in some studies, raises
some issues. First, the degree of melanin pigmentation
in animals (a likely target of much artificial selection)
correlates with various life-history traits (Meunier
et al. 2011), through trade-offs associated with the
melanocortin system itself (Ducrest et al. 2008), and
as a component of behavioural syndromes (McKinnon
& Pierotti 2010; Emaresi et al. 2014). Relatively few
studies have specifically examined the effects of col-
our variants on zebra finch behaviour or physiology.
Two studies found effects on sexual imprinting and
song learning behaviour (Mann et al. 1991; Vos et al.
1993). Two studies found effects on the visual system
(Bredenkotter & Bischof 2003; Eckmeier & Bischof
2008). Nevertheless, a recent molecular analysis found
that white morphs represented a distinct genetic
cluster, reflecting their history of selective breeding
(Hoffman et al. 2014). In the process of selecting for
these colour variants, there may have been uninten-
tional side effects on other traits, through genetic
hitchhiking, selective sweeps or epistasis. While there
have been no investigations of this in the zebra finch,
there are examples in other domesticated systems (e.g.
rats: Will et al. 2003; Overstreet et al. 2005; dogs: Sut-
ter et al. 2004). The effects of such genetic correlations
in the zebra finch might be particularly likely, given
that the genome of the domesticated zebra finch
consists of few, relatively large linkage blocks com-
pared with other vertebrate genomes (Backstrom et al.
2010).

As well as potential divergence between different
domesticated populations, most studied birds are part
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of small isolated populations, vulnerable to inbreed-
ing. Studies of one of the larger research populations
have demonstrated that experimental full-sibling pair-
ings suffering reduced reproductive success (Bolund
et al. 2010). Individuals actively avoid mating with
familiar siblings (Ihle & Forstmeier 2013), and a
recent study of another captive population revealed a
sensitivity to olfactory cues of kinship, with females
reducing reproductive investment when paired with
close relatives (Caspers et al. 2015). As stressful envi-
ronments can exacerbate the effects of inbreeding
(Armbruster & Reed 2005), housing and other stressors
that differ across laboratories might drive variation in
the effect of inbreeding depression across different
studies, as well as the frequency of deleterious alleles
will vary due to population history. Therefore, the fur-
ther consideration of the genetic background and
stochastic differences between different study popula-
tions may help to explain some differences in the
research outcomes across studies, and these might be
better resolved with new genomic approaches (e.g.
Mortazavi et al. 2008; Wang et al. 2009; Metzker
2010; Davey et al. 2011; Ekblom & Galindo 2011;
Ekblom et al. 2014).

Individual differences

Domesticated zebra finches vary across personality
traits such as boldness, exploratory behaviour, activ-
ity, neophobia and aggressiveness (Beauchamp 2000;
Martins et al. 2007; David & Cézilly 2011; Schuett
et al. 2011b; Brust et al. 2013), raising questions as to
how this might directly or indirectly affect compo-
nents that determine reproductive success (Schuett
et al. 2010).

Personality may influence the speed and willingness
with which an individual chooses a mate (David &
Cézilly 2011), and very choosy individuals may sim-
ply refrain from pairing with the bird they are allo-
cated, if they are not behaviourally compatible. Over
time, this could result in inadvertent selection for less
choosy birds in captive-bred populations. A recent
study of wild and domesticated populations of the
house mouse Mus musculus (Slade et al. 2014) demon-
strated significant changes in mate preference beha-
viour within a few generations.

In species such as the zebra finch with biparental
care, mate choice based on assortative mating for per-
sonality could moderate sexual conflict in parental
care, altering reproductive success (Royle et al. 2010).
Pairs with similar personalities may reproduce more
successfully because that may allow for greater coor-
dination of reproductive and parental behaviours
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(Schuett et al. 2011a; Mariette & Griffith 2012a; Both
et al. 2005; but see Schielzeth et al. 2010; McCowan
et al. 2014).

There is preliminary evidence that some individuals
cope better with particular captive conditions (Crino
et al. 2016), and some personality types have greater
reproductive success in captivity (McCowan et al.
2014). The extent to which these biases generally
affect experimental outcomes remains to be deter-
mined, but could be an illuminating area of future
research. Developmental conditions can also directly
affect an individual’s mating behaviour and life his-
tory more generally. Zebra finches imprint on visual
and song phenotypes (Immelmann 1972; Clayton
1990b,c) to an extent that subspecies-specific prefer-
ences can be easily reversed (reviewed in Clayton
1990a). Phenotypic quality and individual condition
can influence both female mate selectivity (Burley &
Foster 2006; Riebel et al. 2009) and phenotypic pref-
erences (Holveck & Riebel 2010). Furthermore, recent
work has demonstrated that the extent of loss of
telomere length during early development is corre-
lated with longevity (Heidinger et al. 2012), and it is
not hard to imagine that this will also affect the pat-
tern of an individual’s reproductive investment strat-
egy throughout life.

Stress physiology

Individuals can vary substantially in their endocrine
responses to environmental stimuli that can, in turn,
cause dramatic variation in reproductive behaviours
(e.g. Lendvai & Chastel 2010). For example, in captive
zebra finches, some individuals might be more sus-
ceptible to stressors associated with housing condi-
tions such as cage conditions, population density and
exposure to caregivers. In birds, stressors activate the
hypothalamic—pituitary—adrenal (HPA) axis and result
in the release of the steroid hormone corticosterone
(reviewed in Cockrem 2013). Corticosterone elicits
physiological and behavioural responses that help
birds prioritize self-maintenance and survival at the
expense of reproduction (reviewed in Wingfield &
Sapolsky 2003). Across bird species, corticosterone is
associated with delayed clutch initiation (Salvante &
Williams 2003; Griffith et al. 2011), reduced incuba-
tion (Spencer et al. 2010; Edwards et al. 2013; Thierry
et al. 2013), lower nestling provisioning (Almasi et al.
2008), greater nest abandonment (Spée et al. 2011;
Strasser & Heath 2013) and lower reproductive suc-
cess (fewer offspring fledged; Schmid et al. 2013). In
captive zebra finches, individual variation in stress
responsiveness could be a mechanism that explains
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variation in reproductive success within a population.
In this scenario, birds that are least responsive to stres-
sors will have the greatest reproductive success.

Stress responsiveness is both heritable and influ-
enced by the early rearing environment (Evans et al.
2006; Spencer et al. 2009; Adkins-Regan et al. 2013),
and even by the stress profile of their partners (Mon-
aghan et al. 2012). If birds with low stress responses
are more successful at breeding in captivity, this trait
will be favoured over time, resulting in captive popu-
lations with dampened stress responses. Anecdotally,
it is apparent that laboratory populations of birds that
are very recently derived from wild birds are much
more flighty than domesticated birds (S. C. Griffith
and W. Forstmeier pers. obs.). Although not yet sys-
tematically explored in zebra finches, physiologically
dampened stress responses have been documented in
grey partridges (Perdix perdix) and white-backed
munia (Lonchura striata) with wild-derived birds hav-
ing higher stress responses compared with domesti-
cated congeners (Suzuki et al. 2012; Homberger et al.
2013). Corticosterone has broad pleiotropic effects on
physiology and behaviour (Sapolsky 2000). Inadver-
tent selection for individuals with low stress responses
is likely to have organismal consequences beyond
modifications in stress physiology.

Individual- and population-level HPA axis charac-
teristics may provide a useful way of comparatively
testing the deleterious physiological effects of poten-
tial sources of reproductive failure as reviewed
herein. For example, studies using direct measures
of corticosterone can evaluate the relative stress of
widespread practices such as forced-pairing (Griffith
et al. 2011), mate separation (Remage-Healey et al.
2003; Perez et al. 2012), food restriction (Spencer
et al. 2005) and housing conditions such as artificial
lighting (Maddocks et al. 2001; Evans et al. 2012).
HPA axis characteristics have been used as a tool to
diagnose the stressfulness of housing conditions and
the efficacy of breeding programmes in zoo animals
(Shepherdson et al. 2004; Scarlata et al. 2012), the
effect of anthropogenic disturbance on reproductive
success in free-living birds (Mullner et al. 2004;
Walker et al. 2005; Crino et al. 2011, 2013) and the
general welfare of captive animals (Lane 2006; Fanson
et al. 2013; Whitham & Wielebnowski 2013). In
summary, identifying the factors associated with
housing and experimental procedures that cause
stress (as indicated by elevated corticosterone) in
breeding zebra finches will allow researchers to miti-
gate stressful practices and capture reproductive suc-
cess across a wider range of phenotypes in captive
populations, that is reducing the strength of
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selection for ‘stressor-resistant” phenotypes, and the
biases that it introduces.

Part II. Environmental Determinants of Variation in
Reproductive Success

Most research laboratories keep birds in controlled
rooms to remove the confounding effects of tempera-
ture, light and humidity variation on experimental
work, but set points do vary for these parameters (see
Table 1). Other sources of variation between research
laboratories will also include differences in housing
conditions and basic husbandry practices. In the wild,
zebra finches are opportunistic breeders that use a
range of environmental cues to optimize reproductive
success (Zann 1996). In contrast to the generally pre-
dictable and primarily photoperiod-dependent devel-
opment of reproductive systems typical of seasonally
breeding passerines (reviewed in Dawson et al. 2001;
Sharp 2005), the physiological reproductive axis of
zebra finches can respond rapidly to favourable breed-
ing conditions, seemingly at any time of year, despite
showing some seasonality to their reproduction (Per-
fito et al. 2006; Williamson et al. 2008; Zann 1996;
reviewed in Hahn et al. 2008). However, individual
pairs vary in the timing of breeding in response to
these environmental cues, leading to a relatively low
level of breeding synchrony within a local population
(Zann et al. 1995; Griffith et al. 2008; Mariette &
Griffith 2012a). This reproductive plasticity means
that for domesticated zebra finches even slight varia-
tion in housing conditions (e.g. light regime, humidity,
food quality, housing density) may have significant
repercussions on breeding success. For example, al-
though photo-stimulation appears to affect testes size
(Bentley et al. 2000), it is thought that this effect is due
to the extended feeding times available at longer day-
lengths (Perfito et al. 2008). Both field and laboratory
studies indicate that individuals are not constantly in a
state of breeding readiness, but rather they cycle
through breeding and non-breeding periods, which
correspond to distinct neuroendocrine states (Perfito
et al. 2007; Prior et al. 2013). Even under constant
environmental conditions, it may be the case that indi-
vidual zebra finches will regulate their breeding activ-
ity and go through periods of breeding rest and may
not be physiologically ready to breed when an experi-
ment is started.

Indoor vs. outdoor housing

Across studies, there is extensive variation in the
basic housing conditions in which breeding birds

S. C. Griffith et al.

are kept (see Table 1). For example, some popula-
tions of zebra finches are kept in partially outdoor
aviaries (e.g. Burley 1986; Gilby et al. 2011; Thle &
Forstmeier 2013), while others experience only
indoor conditions (e.g. Gorman & Nager 2003; Birk-
head et al. 2006). Outdoor and indoor housing
environments probably will vary in temperature
and humidity (see Humidity and temperature), light
quality and quantity, as well as other factors that
affect the health and well-being of captive breeding
birds. For example, in poultry, individuals kept out-
doors with direct access to sunlight are better able
to synthesize vitamin D resulting in better growth
and egg production (Lewis & Gous 2009). The nat-
ural lighting of outdoor housing can also be less
stressful for breeding birds compared with the artifi-
cial lighting of indoor housing that can cause an
increase in glucocorticoid stress hormones (see Stress
Physiology; Evans et al. 2012). Artificial lighting may
also vary qualitatively across research laboratories
depending on the total luminance and whether full
daylight spectrum lights are used.

Housing in outdoor aviaries can also have nega-
tive effects on health and reproduction. For exam-
ple, birds housed in outdoor aviaries may have
greater exposure to interspecific transmissions of
pathogens resulting in higher levels of disease and
morbidity (e.g. Brittingham et al. 1988). Natural
weather conditions will be far more variable than
indoor conditions and also vary significantly with
the local climate geographically. Extreme or unpre-
dictable conditions (e.g. unexpected cold tempera-
tures) could be stresstul for breeding adults and
nestlings, resulting in nest abandonment or nestling
mortality (Lynn & Kern 2014). However, of course
in the wild weather conditions are also variable
and birds should be adapted to dealing with them,
and indeed the natural variation may have impor-
tant stimulatory effects (i.e., light, temperature,
humidity).

Outdoor aviaries may also be subject to varying
levels of environmental background noise depend-
ing on location, and that has adverse effects on
reproduction (Barber et al. 2009). It is also possi-
ble that indoor locations may also be noisy due
to the air handling machinery used. Finally, the
type of housing tends to determine the number
of birds that are held together (e.g. large groups
in outdoor aviaries vs. small groups in typically
smaller indoor cages), which will also potentially
confound attempts to understand the effects of
indoor vs. outdoor housing, for the reasons
discussed below.
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Cross-study variation in zebra finch breeding

Housing and the social environment

The composition and density of breeding groups of
zebra finches is likely to affect both pair bonding and,
in turn, reproductive success. In one of the few stud-
ies to investigate the affect of breeding density in avi-
aries, Poot et al. (2012) found that birds breeding in
lower density conditions produced significantly more
and larger offspring. Research in both domesticated
(Adkins-Regan & Tomaszycki 2007; Schweitzer et al.
2014) and wild zebra finches (Mariette & Griffith
2012b) has focused on the importance of the pair
bond in this species for successful reproduction. These
studies suggest that pairs that are well acquainted,
phenotypically similar to one another, or with a high
level of behavioural coordination differ from other
pairs in a number of aspects of reproduction such as
the time taken to initiate breeding or the number of
offspring produced. However, there is variation across
studies and in research populations in the way in
which individuals can form and maintain pairs. Pairs
are either allowed to form naturally in aviaries (free
choice — but constrained as individuals become paired
and are removed from the mating pool), or are deter-
mined by the experimenter as a male and female are
placed in a cage together (force-paired; Table 2 and
references therein). In the zebra finch, females force-
paired to males that are preferred in prior mate choice
trials, laid slightly more eggs or laid the first egg of
their clutch sooner, compared with females paired
with non-preferred males (Balzer & Williams 1998;
Holveck & Riebel 2010). In their recent study, Ihle
et al. (2015) found that individuals that were allowed
to freely chose a partner achieved a 37% higher fit-
ness than did experimentally force-paired birds. That
finding is consistent with recent studies in a number
of captive-bred zoo species in which animals mated to
their preferred partner, rather than to non-preferred
or breeding-programme assigned partners (often for
genetic management), experienced dramatically
increased reproductive success (Martin & Shepherdson
2012).

In addition to the potential stress caused by forced-
pairing, captive zebra finches also experience stress
when separated from their partner during or at the
end of experiments (Remage-Healey et al. 2003; Perez
et al. 2012; Schweitzer et al. 2014), although some of
this stress might have been due to the stress of social
isolation itself (i.e. being isolated from other con-
specifics). Breeding partners are often separated at the
end of experiments and birds are kept in single-sex
populations before pairing them at a later date with
the same or a different partner for another

S. C. Griffith et al.

experiment. In the wild, males and females form
enduring partnerships and remain close to one
another throughout the year (Mariette & Griffith
2012b) with little evidence of infidelity (Griffith et al.
2010) or divorce (Zann 1996). Hence, elevated stress
hormones caused by partner separation or forced-
pairing could contribute to reduced reproductive suc-
cess in laboratories (see Stress physiology). There is also
likely to be an effect on reproduction of the level of
experience that a pair have in breeding together
(Adkins-Regan & Tomaszycki 2007), and yet this is
rarely reported or considered methodologically.

The wild zebra finch is a very social bird with indi-
viduals nearly always found in the company of small
groups of conspecifics (McCowan et al. 2015), and
pairs often breeding closely together (Zann 1996;
Mariette & Griffith 2012a). In aviaries, birds will be
free to socially interact with many other individuals,
whereas when housed in cages, there is likely to be a
reduced degree of visual and acoustic communication
between individuals in different pairs (cages). There is
some evidence from captive birds that reproductive
investment is modified by acoustic signals from other
members of a loose social group (Waas et al. 2005).
This finding is consistent with the observation that in
the wild, despite a low level of synchrony across a
whole population, pairs nesting very closely to one
another synchronize their reproductive activity
(Mariette & Griffith 2012a). However, while social
contact can have stimulatory effects on some individ-
uals, there may be inhibitory effects on others (Poot
et al. 2012). In the wild, some pairs actively choose to
breed alone away from colonies (Mariette & Griffith
2012a). This may reflect an underlying behavioural
polymorphism between social and asocial individuals,
with the latter perhaps socially inhibited by the close
proximity of others (Dall & Griffith 2014). Breeding in
aviaries, rather than in cages, has the advantage of
more closely resembling natural circumstances in
which individuals and pairs can act as part of a social
network and facilitate each other. However, the social
situation in an aviary can create competition for nest
sites, nesting material and food, which in turn might
result in lower reproductive success for some individ-
uals (McCowan et al. 2014).

Variation in the size and construct of social groups
(through housing, see Table 1) will also have conse-
quences for the development of social and sexual
behaviour in offspring (Ruploh et al. 2012; Mariette
et al. 2013). Reproductive success may be affected by
the production of song in adults, with key parameters
of song structure (complexity, tempo, stereotypy) and
output being affected by the environment (Holveck
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et al. 2008; Brumm et al. 2009) and by the availabil-
ity of song tutors during early life (Derégnaucourt
2011). There is some evidence of reduced variance in
song structure between wild and domesticated popu-
lations (Slater & Clayton 1991; Woodgate et al. 2012),
and it is possible that there is variation in the quality
or variance of song across captive populations. Varia-
tion in the expression of song across populations may
contribute to heterogeneity in reproductive invest-
ment and behaviour given the importance of song in
stimulating reproduction (Riebel 2009; Bolund et al.
2012; Woodgate et al. 2012). In addition to affecting
the development of song, the early environment also
affects the development of song preferences in
females (Clayton 1990a; Riebel et al. 2009; Honarmand
et al. 2015), and therefore potentially this may vary
systematically across populations.

Humidity and temperature

In wild zebra finches, the trigger of breeding activity
has generally been related to rainfall (Zann et al.
1995). Other environmental cues such as humidity
and temperature have been shown to both directly
(Vleck & Priedkalns 1985; Cynx 2001) and indirectly
(Williams 1996a; Williamson et al. 2008) stimulate
reproductive behaviour in zebra finches. Variation in
humidity could be an informative cue for zebra
finches as it is related to rainfall and groundwater
conditions, which influence both water and food
availability. However, humidity is often not
accounted for in captive studies and a relatively large
range is often considered as constant (Table 1). For
example, Williams (1996b) considered humidity
range of 35-55% as constant. Williamson et al.
(2008) found seasonal patterns of maternal invest-
ment in birds breeding in ‘constant temperature and
humidity rooms” but suggest that the 40-60% varia-
tion in humidity in their study may have been the
variable that could have influenced breeding if the
birds are sensitive to such changes. Therefore, it
appears important to pay attention to even small
changes in humidity, as there remains the possibility
that variation in humidity in captive breeding envi-
ronments may affect reproductive output. Unfortu-
nately, it is very difficult to artificially control
humidity to a high degree as air-heating systems typi-
cally deliver dry air, and humidity is not often con-
trolled to a high level of precision independently of air
temperature.

In addition to humidity, variation in temperature is
likely to affect reproductive physiology and behaviour
in ways that may contribute to variation in
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reproductive success. Wild zebra finches have been
recorded breeding throughout the winter in tempera-
tures as low as 2.2°C (Zann et al. 1995), and in sum-
mer in temperatures above 40°C (Griffith et al. 2016).
Periods of low temperature are associated with a
reduction or cessation of reproductive activity in wild
zebra finches (Davies 1977). Reproductive success in
captive birds may be similarly affected by variation in
temperature, or across seasons. Captive birds kept at
low temperature (7°C) increased food consumption
and time to initiate egg laying and decreased the total
number of eggs laid (Salvante et al. 2007). Further-
more, presumably due to the costs of thermoregula-
tion, females reduce the amount of heat transferred to
eggs during incubation in low temperature conditions
(Nord et al. 2010). The standardized and invariant cli-
matic conditions of captive studies may cause their
own problems, but it is worth noting that studies of
wild birds generally also rarely report the climatic
conditions during which ecological studies are con-
ducted, and these are also likely to cause variation
across studies.

Handling and disturbance

Laboratories may vary in a number of standard pro-
cedures relating to the provision of cover, the num-
ber of times birds are visited during the day,
cleaning routines and the type of interaction that
birds get from humans, all of which may lead to
different levels of disturbance and stress, which
may ultimately result in inadvertent selection on
stress-tolerant phenotypes. Alternatively perhaps
more disturbance simply leads to a higher level of
habituation to such factors. To date, there have
been few studies investigating these issues in the
zebra finch. Collins et al. (2008) found that the
provision of a food reward (fresh greens) directly
after handling helped birds to recover normal beha-
viour more quickly after the disturbance. In the
same study, they also investigated the effect of pro-
viding cover (part of the cage was covered with an
opaque cloth), but found that this actually
increased the level of fearfulness over the course of
the experiment (Collins et al. 2008). Although they
did not look at reproductive performance in the
context of these factors, Collins et al. (2008) found
that birds that were rewarded after handling were
more attractive when testing in a mate choice assay
than those that had not been rewarded. The effects
of handling or visiting stress on captive animals can
be subtle, as seen by significantly different anxiety
and pain responses from laboratory rodents in the
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presence of male vs. female research technicians
(Sorge et al. 2014).

Diet and nutrition

The basic diet and nutritional supplements provided
to breeding zebra finches vary within and across
populations and are likely to influence variation in
reproductive investment and success (Monaghan
et al. 1996; Williams 1996a; Gorman & Nager 2003)
and diet effects can be long-lasting and span across
generations (Naguib et al. 2006). In Table 1, we
have summarized some examples of dietary varia-
tion across different studies and populations. It is
standard practice to provide zebra finches with an
ad libitum seed diet, but there can be substantial
variation in the quality of food with some diets for-
tified with vitamins and other supplements. In addi-
tion to seed, breeding zebra finches are often
supplemented either daily or intermittently with
more nutritious foods such as hard-boiled eggs and
spinach (Table 1). The diet, often experimentally
manipulated, provided to zebra finches prior to and
during reproduction can have pervasive effects on
reproductive success. For example, females provided
with a low-quality diet produce smaller eggs, smal-
ler clutches, have lower hatching success, fledge
fewer young and, overall, have lower lifetime
reproductive success (Lemon & Barth 1992; Selman
& Houston 1996; Rutkowska & Cichon 2002; Rutstein
et al. 2004a,b). In males, diet quality can influence
bill and plumage coloration, and courtship rate, all of
which may then affect female preference and repro-
ductive investment (Burley et al. 1992; McGraw et al.
2003; Atagan & Forstmeier 2012).

In addition to variation in diet quality, laboratories
also vary in the manner in which food is provided to
their breeding birds, which could influence reproduc-
tive success. For example, the number of outlets
through which a given amount of food can be accessed
influences the acquisition of that food by individual
birds (e.g. Broom & Ruxton 2003; Vahl & Kingma
2007) and large groups of birds in aviaries with a single
food dispenser will have to compete much harder than
pairs housed in small cages. As a result, in large avi-
aries, dominant individuals may have greater access to
food. Access to food could affect reproductive success
by influencing individual decisions about mass regula-
tion (Cuthill et al. 1997), the physiological ability of
birds to breed (Rashotte et al. 2001; Sandell et al.
2007) and the expression of condition-dependent sex-
ually selected traits such as bill colour and song rate
(Birkhead et al. 1998; Pariser et al. 2010).
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Part I11. Variation in Reproductive Success Across
Laboratories

Here, we characterize the variation across laboratories
in the reproductive success of individuals breeding in
different contexts. The data we present are unsuitable
for directly measuring the extent of selection (because
they do not represent lifetime reproductive success).
However, they provide a first indication of the extent
to which selection might be acting in such popula-
tions and also on interpopulation differences. The
level of contemporary selection may also affect the
composition of experimental data sets. For example,
variation between pairs in the latency to lay (when
presented with an opportunity to breed) results in a
selective pressure determined by the amount of time
birds are given to breed. An experimental cut-off of
15 days after individuals are given the opportunity to
breed will create a systematic bias with respect to a
trait that is significantly related to the latency to lay
(such as bill colour, or prior breeding experience). If
such relationships exist then, for example, if the
research focuses on parental care, then the data will
be gathered only on the subset of birds that have bred
before the experimental cut-off is reached. It will also
affect the composition of subsequent generations if
the cut-off determines which individuals produce off-
spring and which do not. There are anecdotal reports
that finch breeders only breed females that lay eggs
quickly when given a mate, and this may have
resulted in selection over many generations of domes-
tication. There are many logistical reasons why exper-
imental cut-offs are used, and we simply wish to raise
an awareness of the sort of bias that they may
introduce.

The other obvious source of experimental and pop-
ulation bias is where variation in reproductive success
is significantly related to variation in traits such as
behaviour or morphology (i.e. natural or sexual selec-
tion). Such a relationship will result in larger numbers
of offspring being produced by a subset of the adult
population, affecting the composition of the popula-
tion over time. It may also result in biases in experi-
mental samples if an outcome requires the production
of a certain number of surviving offspring. For exam-
ple, if the end point of the research project is to com-
pare either sons and daughters, or extra-pair and
within-pair offspring that survive to a certain age,
then more data will come from pairs that produce
larger broods. If we can start to develop an awareness
of such biases, it will help us in the interpretation of
results and also enable us to control and reduce such
bias in future studies.
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Methods

The lead author contacted researchers in North
America, Europe and Australia (the regions where
most of the work on captive zebra finches has been
done) that have published research on zebra
finches in the past 10 years to request their
involvement in this study. A number of researchers
did not respond to this initial communication and
are therefore not represented, along with other
researchers that were unable to, or did not wish to
contribute data on these specific questions. The
authors of this paper have contributed their own
data where applicable and contributed to the writ-
ing of the paper. Data were compiled in an effort
to determine the proportion of females that pro-
duce (1) eggs and (2) fledglings, when given the
opportunity to breed (Table 2). For these same
pairs, we also report whether they were housed in
a cage or aviary, whether they were force-paired or
free to choose partners, as well as whether they
originated from wild or domestic stock. Contribu-
tors provided data from their records, and none of
these data were the result of work targeted just at
assessing proportional reproductive success. These
breeding data were collected as part of researchers’
independent ongoing research with this species,
which was conducted in line with their own ani-
mal ethics approvals and the legal requirements of
their respective countries. We collated data from
situations in which birds were not subject to exper-
imental manipulations that are likely to have signif-
icantly affected their reproduction. In cases in
which broods had been switched in cross-fostering
experimental designs, we used only the data col-
lected up to the point of the cross-fostering. Most
of the data we have gathered and presented come
from individuals given a single opportunity to
breed. However, we have included a focus on one
of the studies in which individuals were allowed to
breed repeatedly over an extended period of time.
These data (provided by Varian-Ramos and Swad-
dle, from the College of William & Mary, United
States, summarized in Table 3) provide us with an
excellent opportunity to assess the repeatability of
reproductive success at an individual level. These
data provide important insight into the extent to
which reproductive success and failure may be
attributable to individual differences. In their study,
Varian-Ramos et al. (2014) tracked a total of 33
individuals over a 12-month period in which the
birds were allowed to breed ad [libitum. We used
only the data from the control individuals in that

Ethology 123 (2017) 1-29 © 2016 Blackwell Verlag GmbH

Cross-study variation in zebra finch breeding

Table 3: Breeding data from 33 females that were given freedom to
breed over a 12-month period in cages at the College of William and
Mary, US. Eggs were removed 21 days after the last egg was laid if they
had failed to hatch. Offspring were removed from their parents once
they had reached independence. The data have been ordered by the
number of fledglings produced

Female No. No. % Eggs % Chicks
ID clutches No.eggs No.chicks fledge hatch fledge
99 16 57 0 0 0.0 NA
121 14 70 5 0 7.1 0.0
300 13 33 0 0 0.0 NA
1555 14 71 5 0 7.0 0.0
237 15 72 1 7 15.3 63.6
778 4 18 10 7 55.6 70.0
206 13 68 29 11 42.6 37.9
295 9 70 23 11 329 47.8
1000 9 29 14 I 48.3 78.6
1744 9 50 17 "1 34.0 64.7
1741 10 62 16 12 25.8 75.0
128 " 74 23 13 31.1 56.5
257 8 38 16 13 421 81.3
771 6 25 23 13 92.0 56.5
288 14 77 15 14 19.5 93.3
1579 8 68 22 14 324 63.6
115 8 39 19 15 48.7 78.9
1825 8 45 18 15 40.0 83.3
1682 " 56 25 16 44.6 64.0
1565 7 30 17 17 56.7 100.0
1941 6 22 20 19 90.9 95.0
264 11 69 26 21 37.7 80.8
218 "1 68 26 23 38.2 88.5
198 8 44 24 24 54.5 100.0
254 8 39 30 25 76.9 83.3
1157 7 36 34 25 94.4 73.5
200 6 31 30 25 96.8 833
1828 6 30 28 25 933 89.3
310 9 47 30 29 63.8 96.7
355 11 74 33 30 44.6 90.9
1561 8 73 40 31 54.8 77.5
1771 7 35 34 33 971 971
533 " 50 41 34 82.0 82.9

study, as those birds were not subject to the experi-
mental treatment that was the focus of that work
(Varian-Ramos et al. 2014). Varian-Ramos et al.
(2014) removed clutches 21 days after the last egg
was laid if the eggs failed to hatch, and removed
offspring from their parents when they reached
independence. One clutch from each pair was
removed as part of the study, but all other clutches
were left for the parents to hatch and rear. The
removed clutch was excluded from analyses, and
similarly 12 broods were removed immediately after
fledgling and these were excluded from the analysis
of those offspring reaching independence.
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Statistical Methods

Our statistical analyses were focused on addressing
individual repeatability of reproductive success, and
characterizing variation in reproductive success across
and within populations, as well as investigating a cou-
ple of likely factors that might determine that varia-
tion. The percentage of females in each study that
succeeded in clutch initiation and producing at least
one fledgling in the across-study data set, and the per-
centage of breeding attempts per female that were
successful in producing either fledglings or indepen-
dent young in the data from the College of William &
Mary, US; CW Varian-Ramos and JP Swaddle
(Table 3) were transformed into binary data (i.e. 1:
success, 0: failure) for all the analyses. Intraclass cor-
relation (ICC) was calculated for this success—failure
outcome to examine the variability of reproductive
success at the level of individual (data from: Varian-
Ramos et al. 2014). The ICC in latent scale (link scale)
was estimated based on generalized linear mixed
models (GLMMs) with a binomial distribution with
logit link function. Models were fitted to the binary
success—failure data. The latent scale ICC serves as a
measure of variation in the response variable inde-
pendent of its mean value and is comparable across
different sets of data (Nakagawa & Schielzeth 2010).
The models included identity of female as a random
effect. Differences between ICC estimates were exam-
ined based on posterior probability. Models were fit-
ted, and parameters were estimated with Markov
chain Monte Carlo, using software Stan (http://mc-
stan.org/) called from the R package rstan (Stan
Development Team 2016). Female identity effects on
clutch size, the number of fledglings and independent
young were tested using a generalized linear model
(GLM). The ditference between females (those who
produced at least one fledgling) in the number of
fledglings was examined with a zero-inflated Poisson
(ZIP) model with log and logit link functions using R
package pscl (Zeileis et al. 2008).

The effect of several factors on clutch initiation and
fledging success was investigated using two separate
GLMM with a binomial distribution and logit link
function. In both cases, housing condition (indoor vs.
outdoor), pairing type (forced vs. free choice) and ori-
gin of strain (captive-bred vs. wild-derived) were
included as fixed effects. Identity of study and identity
of institution were included as random effects. Models
were fitted using R package Ime4 (Bates et al. 2015).
Similarly, the effects of female age were examined
using GLM with a binomial distribution and logit link
function.
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Results

Individual Repeatability in Reproductive Success

In the data reported in Table 3, for a set of females
over a period of continual breeding (52 wk) 33
females produced 316 clutches (mean = 9.58 £+ 2.99
SD). In total, 1670 eggs were laid (mean clutch size
5.32 + 1.62 SD) and from these eggs 704 chicks
hatched (mean per clutch 2.55 + 1.66 SD). From
these chicks, 544 birds were fledged (mean per clutch
2.00 = 1.52 SD; mean per female 16.48 £ 9.69 SD)
and 461 independent were produced (mean per
clutch 1.82 4+ 1.51 SD). Overall just 42% of all eggs
laid went on to hatch and just 28% of eggs produced
an offspring that survived to independence. The rela-
tionship between the number of fledglings produced
in each nest (not accounting for female ID) and the
number of independent offspring produced was strong
(r* = 0.87, df = 138, t-value = 30.07, p < 0.001). How-
ever, the relationship between the number of hatch-
lings and fledglings produced was weaker (* = 0.55,
df = 177, t-value = 14.80, p < 0.001), and the rela-
tionship between the production of eggs and produc-
tion of hatchlings was weaker still (+* = 0.088, df =
314, t-value = 5.51, p < 0.001).

Females differed in their clutch size (likelihood ratio
test, > = 126.65, df = 34, p < 0.001, n = 380 nests,
GLM), likelihood of successfully producing fledglings
(categorized as a binary variable) (y? = 171.7, df = 32,
p <0.001, n = 316, GLM), in the number of fledglings
produced in successful broods [that produced at least
one fledgling; x> = 119.54, df = 32, p < 0.001, n = 316
(152 were successtul), ZIP model, and in the likelihood
of producing independent offspring (categorized as a
binary variable) (x*=159.9, df =32, p<0.001,
n = 304, GLM); See Fig. 1b]. The proportion of varia-
tion explained by interfemale differences did not differ
for the success in rearing young to fledging, and in
rearing them to independence (for the production of
fledglings, Intraclass correlation  (ICC) = 0.56,
SE = 0.095, n = 316 nests; and for independent off-
spring, ICC = 0.53, SE =0.094, n = 304; posterior
probability, Pr(fledging < independence) = 0.45). Both
variables were more repeatable than clutch size
(ICC = 0.22, SE = 0.058, Pr(fledging < clutch) = 0.0,
Pr(independence < clutch) = 0.004).

Cross-Study Comparison of Clutch and Fledging
Success

From Table 2, we combined data from 23 institu-
tions on egg hatching success per female and from
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Fig. 1: (a) Mean number (+SE) of fledglings produced per successful
brood across 29 females that were given the opportunity to breed
repeatedly across a year, and that raised at least some fledglings suc-
cessfully (four females failed to fledge any offspring and are therefore
not represented). All 29 females were successful but there are signifi-
cant differences in how many fledglings they produced (see results). All
data were from the longitudinal study by Varian-Ramos et al. (2014). (b)
The proportion of females (£SE) that successfully fledged offspring
when given the opportunity to breed. Data from 35 studies.

21 institutions on fledgling rearing success per
female. In total, 2813 females of 3213 successfully
hatched chicks (proportion = 0.88, SE = 0.006), and
1899 females of 2906 raised fledglings (propor-
tion = 0.65, SE = 0.01). The probability of females
initiating at least one clutch varied across studies
(x* =136.96, df =1, p<0.001, n=3213 females,
70 studies, 23 institutions, GLMM) but not across
institutions (x> = 0.0008, df =1, p=0.98). Simi-
larly, the probability of producing fledglings was dif-
ferent across studies (x> = 136.78, df = 1, p < 0.001,
n = 2906 females, 57 studies, 21 institutions,
GLMM, Fig. 1b) but not across institutions
(x> =25, df =1, p=0.11), suggesting that experi-
mental conditions specific to individual studies
explain more variation in egg laying than popula-
tion-level factors.
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Reproduction and Pair and Female Characteristics

Females were as likely to produce a clutch when
housed either indoors or outdoors (Wald test,
z=1.65,p = 0.099, n = 3003 females, n = 68 studies,
n = 20 institutions, GLMM; Fig. 2a), and when force-
paired or given free choice of partner (z= 0.25,
p = 0.8; Fig. 2b), while a higher proportion of females
from domestic origin produced a clutch than those
from wild-derived populations (z = —2.08, p = 0.04;
Fig. 2c). Females in indoor cages fledged significantly
fewer young than did females breeding in outdoor
cages/aviaries (z = 2.42, p = 0.016, n = 2696 females,
55 studies, 22 institutions, GLMM; Fig. 2d). Females
from domesticated strains were more likely to pro-
duce fledglings than those in populations derived
from the wild more recently (z= —3.65, p < 0.001;
Fig. 2e). Females that were force-paired by research-
ers and pairs formed through mate choice were
equally likely to fledge young (z = —0.88, p = 0.38;
Fig. 2f). For three institutions, we could compare suc-
cess of females from two different age categories (all
else is presumed to be equal). In two of the three insti-
tutions, young females had a greater reproductive
success than older ones. In Lund, Sweden, domesti-
cated females (females of 9 vs. 20 mo) were equally
likely to produce a clutch (all females were successful,
n = 56), and there was no difference in fledging
success (z=0.106, p = 0.92, n = 56, GLM). In domes-
ticated birds in Glasgow, UK, (females of 7 vs. 43 mo)
younger females were more likely to produce a clutch
(z=3.57, p<0.001, n =144, GLM), and to fledge
young (z=5.62, p <0.001, n = 144, GLM). At the
Max Planck Institute (Seewiesen, Germany), there
were comparative age classes across both domesti-
cated and wild-derived birds, allowing two separate
comparisons. For domesticated birds (13 vs. 42 mo),
young birds were more successful at producing
clutches (z = —4.214, p < 0.001, n = 328, GLM) and
in fledging offspring (z = —5.437, p < 0.001, n = 328,
GLM). For wild-derived birds (10 vs. 24 mo), young
females also tended to be better at producing clutches
(z=—-1.028, p=0.30, n = 114, GLM) and fledglings
(z=—1.073, p = 0.28, n = 114, GLM).

Discussion

We found that a significant percentage (around 35%)
of females do not successfully produce offspring when
given the opportunity to breed in the captive context.
Approximately half of these females fail to produce a
clutch, and the remainder did not successfully raise
offspring. For those females that do produce a clutch,
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Fig. 2: The reproductive output of females when given the opportunity to breed measured through two metrics: producing a clutch (a—c), and pro-
ducing fledglings (d-f). Females were examined across two categories: either housed indoors or outdoors (a and d); domestic or wild origin (b and e);
force-paired or free choice (c and f). The graphs show predicted mean (£SE) from GLMM. The numbers on the graphs are the number of females

used.

the primary determinant of reproductive failure is
hatching failure. However, these birds also fail to raise
hatched nestlings to fledging and in the subsequent
production of independent young. Most of this varia-
tion is driven by differences across individual studies
rather than differences across institutions. On the one
hand, this may perhaps be comforting because it sug-
gests that generally laboratory populations are not
hugely different from one another in the way in
which they reproduce. However, this does also sug-
gest that variation in reproduction can be driven by
the differences in the way that individual studies are
set up and that certainly is a cause for concern,
because it means that the replicability of results may
be challenging even with the same set of birds, if, as
yet-unidentified parameters are changed between
studies. We suggest that future studies try to identify
which of the parameters we have reviewed in Parts I
and II are the cause of this interstudy variation.

We also found some evidence that the age of
females may affect reproductive outcomes, as younger
females were more successful than older females in

20

two of three institutions in which there were data
available (the age of young and old females varied
across the studies — see results). An important caveat
here is that the data that provided the opportunity for
the comparison of young and old females did not
come from studies that were specifically designed to
test that and there are likely to have been other
uncontrolled sources of variation. We also found that
females that bred outdoors produced a higher number
of fledglings than those that bred indoors although
those categories also typically correlate with the size
of the breeding enclosure (cages vs. aviaries). Again,
this finding from the data overall is not from con-
trolled studies designed to test for this difference
specifically. We found no evidence of a difference
between females that were force-paired, or those that
were free to choose their partner (but see Ihle et al.
2015 for a more direct investigation of this that found
an effect).

We also found some evidence for a higher level of
reproductive success in domesticated birds than in
laboratory populations that were recently derived
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from birds taken from the wild. This result is consis-
tent with the idea that selection has lead to traits that
improve reproductive performance in captive condi-
tions. We found strong evidence of intrinsic variation
in individuals” ability to reproduce in the conditions
they were provided, as would be required for selection
to act. We found moderate intraclass correlation in
reproductive success at the level of individual females,
indicating that individual reproductive success was
repeatable in the longitudinal data from the College of
William and Mary (Table 3, Fig. 1a). The latter data
also illustrate how strong the selection can be, with a

Cross-study variation in zebra finch breeding

large reproductive skew across the females monitored
(although of course some of this may have been due
to their mate).

It is important to be mindful that the data presented
here were not originally collected in order to address
these issues. The heterogeneity in the data sets pre-
sented and in the context in which the captive popu-
lations were held precludes a comprehensive
investigation into the sources of variation in breeding
success among these research laboratories. Neverthe-
less, we believe it is worthwhile to consider and high-
light the potential sources of variation that might

Table 4: A proposed set of data to be completed in all future publications reporting on work focused on the zebra finch

Aspect Item

Detail

Study design N experimental groups
N control groups
Nature of replication

N adult males used

N adult females used

Numbers used

For example, whole experiment was conducted twice
(count all individuals that were initially used)

N males with opportunity to reproduce
N females with opportunity to reproduce

N females that laid eggs
N females that had chicks
N females that fledged young

N males for which data is presented
N females for which data is presented
N individuals that died or removed

Other reasons for missing data
Experimental procedures
Nature of any invasive work

Duration given for breeding opportunity

Domesticated or wild stock
Source population

Variety

Age

Average mass of adults

Prior breeding experience
Allocation of breeding partners

Experimental animals

Any bias in selection of individuals

Housing and husbandry Cagelaviary size

N individuals per cage

Sex ratio present in each cage
Food provided ad libitum

Supplemental food provided

Any restriction in provision of food

Type of nest site provided
Nesting material provided

Environmental enrichment or shelter

Indoors or outside
Temperature control
Humidity control

Light/dark cycle

Average clutch size

Average number of fledglings

Results — baseline data

Nature of any experimental manipulation

For example, one bird was removed after injuring a wing
For example, some blood samples not assayed

Specify details (i.e. testosterone implant)

For example, 30 ul blood sample during chick rearing
For example, in weeks

Domesticated or recent Wild origin

Recent origin of stock (i.e. UK domestic birds)
Wild-type plumage or colour morph

Less than a year, or greater than a year, or mix

Mass in g

Yes/no (or mix)

For example, force-paired or free choice

For example, only birds with breeding experience used
Width x length x height (m)

For example, 0.5 (as many males as females)

For example, dry seed finch mix

Type and frequency

For example, seed provided mixed with husk

For example, wooden nest box, woven basket

For example, Hessian fibre, coconut fibre, feathers, grass
For example, shelter in 1/3 of cage

For example, constant 25°C, or local outside conditions
For example, 50%

For example, 14L:10D

Mean 4+ SD

Mean + SD (excluding zeros)
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contribute, at least in part, to variation within and
between populations in reproductive success of
domesticated zebra finches.

Summary

The ease with which domesticated zebra finches breed
in captivity, relative to other birds, has made them a
model system for research across a diversity of fields.
The zebra finch will remain an excellent model sys-
tem with which to conduct work both in the wild and
in captivity and we wish to sharpen the insight that
future studies of this species can provide. We present
data showing a large amount of variation in reproduc-
tive success across research laboratories. Although this
variation is often noted anecdotally, it has not been
the focus of any studies to date. Here, we have high-
lighted several potential factors that often vary
between laboratories that could influence variation in
reproductive success in domesticated zebra finches.

We accept that there is always likely to be variation
in the housing and husbandry practices of different
laboratories. Research groups have to make strategic
decisions on the basis of space or monetary constraints
as well as following different opportunities to optimize
local welfare recommendations. However, for some of
the parameters examined, there is no obvious reason
why some conditions could not be more standardized.
For example in Table 1, we can see that most studies
are conducted with a day:night ratio of 14:10 h, and
around 22°C. Perhaps these could be taken by future
studies as standard conditions, which would start to
reduce the heterogeneity among different studies?
Although more standardized conditions across labora-
tories might be the most desired outcome, at the least
we suggest that further consideration should be given
to the way heterogeneity in conditions and protocols
across different studies may affect outcomes. This may
provide insight into why laboratories can find con-
flicting results when approaching similar questions in
the same species (Jennions 1998; Seguin & Forstmeier
2012).

Our review of the variation in reproductive success
within and across laboratories highlights that studies
of the captive zebra finch provide excellent opportu-
nities to understand many aspects of reproductive
biology, the sources of variation for fitness and the
mechanisms of the domestication process. We urge
authors to bear these issues in mind when interpret-
ing the findings of their studies on this important
model species. We also believe that our findings, and
future work on the questions we raise in this species,
may provide broader insight into the issues that occur
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when animals are brought into captivity. This is rele-
vant for fundamental animal-based research, but also
for the breeding of animals in conservation pro-
grammes that are increasingly called upon to establish
source populations that provide organisms to re-
establish or supplement wild populations.

Finally, we endorse the recommendation made by
Kilkenny et al. (2010) in their paper outlining the
ARRIVE guidelines for the reporting of information
that will provide a greater degree of contextual infor-
mation in a standardized way. Such information will
facilitate later attempts to review and analyse varia-
tion across studies.

Recommendation

We propose that all future work on captive zebra
finches includes the information itemized in Table 4.
While some of that information might be considered
quite standard information, much of it is not reported
in papers focused on captive zebra finches. We suggest
that these data could be presented in a Table provided
either in the Methods section or as Supplementary
material. The information requested in Table 4 is
heavily informed by the items outlined in Kilkenny
et al.’s (2010) ARRIVE Guidelines and their Table 2
with some additional information that is more rele-
vant to the zebra finch (as discussed above). We advo-
cate that the table be completed and used as is, rather
than being modified with fields excluded or additional
ones included. A standardized reporting form will
facilitate future efforts to harvest and utilize the mate-
rial presented.
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