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SUMMARY  23 

Infections spreading from host-to-host are a burden of social lifestyle mostly documented at the 24 

local scale (within groups). The influence of social structure at a broader scale (e.g., between groups 25 

or regions) on infectious disease dynamics is less understood partly due to the difficulty to identify 26 

the relevant social groups at this scale. Dialect groups encompass long-held human contacts and 27 

could indicate social groups relevant to infections. Using nationwide individual-level mortality 28 

records from pre-industrial Finland (1800–1850), we investigated which social grouping best 29 

predicted spatial variation in smallpox, pertussis and measles mortality by comparing models with 30 

no regional information, administrative regions and dialect groups. Dialect groups explained spatial 31 

variation of pertussis, adminsitrative regions for smallpox, while measles showed no broader scale 32 

spatial variation. These results highlight the complex spatial structuring of infectious diseases and 33 

stress the need for studies to identify the relevant social structure.  34 
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INTRODUCTION 35 

Infections spreading from host to host are one of the main costs of sociality1–5. The size and structure 36 

of the social organisation (e.g., the existence of social hierarchy), as well as more detailed metrics 37 

of the social network (e.g., number of social partners, frequency of interactions), have been linked 38 

to disease incidence and dynamics both theoretically and empirically6–11. The importance of local 39 

social structure in disease distribution has also been documented in humans: the dynamics of directly 40 

transmitted pathogens were for instance found to be affected by the existence of socially connected 41 

groups in municipalities, such as schools12–14, and households and villages15.  42 

 However, the impact of social organisation on disease dynamics extends beyond this local 43 

scale and can influence spatial patterns of diseases at a broader regional scale3,16,17. For instance, 44 

social species show variation in anti-parasite strategies18,19 and in immune defences20 between 45 

populations. Similarly to non-human species, the epidemiological consequences of human social 46 

structure at the regional scale remain not well understood. One limitation stems from the difficulty 47 

of identifying the relevant regional population structure as it requires detailed information on 48 

regional variation between groups (e.g., on group characteristics, contacts between groups, people's 49 

movements)8,21–25. Due to its easy availability, infectious disease studies in humans often use 50 

administrative units such as counties, regions, states or countries to control for regional variatione.g., 51 

26,27 even if administrative borders are, to a large extent, the outcomes of political or historical 52 

events28. However, several studies show that biological processes do not align with regional borders, 53 

for instance in the case of genetic clustering of the British population29, the distribution of plague 54 

patterns and its consequences on land use in middle ages30 or regarding the ecological niche of the 55 

lumpy skin disease virus in the middle-east countries31. Therefore, although the consequences of 56 

using administrative regions to model epidemiological processes and its potential mismatch with 57 

population characteristics have not been assessed, it is likely that administrative regions may only 58 
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partially represent shared characteristics of the population, and thereby not well predict the 59 

geographic scale of outbreaks or the interventions required to contain them32–34.  60 

 Dialects, which are partly formed as a consequence of long-held social contacts, could be an 61 

informative way to identify regional variation in human populations. Here, we define dialects as 62 

mutually intelligible, regional variants of a language that arose from spatial segregation of speaker 63 

populations followed by linguistic divergence35. The spatial segregation of dialects may be a result of 64 

various social processes and geographical distancee.g., 35,36 and may reflect regional-level differences in 65 

social contacts37, and in cultural or in environmental characteristics38. Therefore, regional differences 66 

in language (i.e., dialects) could be a good variable to characterize regional variation in infectious 67 

disease dynamics. However, studies investigating this hypothesis are currently lacking.  68 

 In this study, we tested whether regional variation in the Finnish language can explain regional 69 

variation in the mortality from three childhood infections (smallpox, pertussis, and measles) in pre-70 

industrial Finland. These three childhood infections are directly transmitted from person to person 71 

(through direct contact or airborne droplets)39 and were leading causes of childhood mortality at 72 

that time15. This population is suited for this study for several reasons: (1) Finland has excellent 73 

church records, which document individual-level deaths and their causes across Finland since 1749, 74 

thereby enabling the comparison of different types of geographical clustering of mortality risk across 75 

the whole population; (2) mortality from smallpox, pertussis and measles are well-documented in 76 

this population40,40,41 and studies have shown that geographical distance and demographic factors 77 

explain spatial variation in childhood infections at a local scale15; (3) linguistic variation of Finnish has 78 

been extensively studied reviewed42 and quantitative dialectometric studies have documented robust 79 

dialect groups38,43, thereby allowing the use of these groups in this study.  80 

 We investigated whether dialect groups could explain regional variation in mortality by 81 

comparing the fit of models using different variables to cluster social groups. Specifically, we 82 

compared the fit of three models: (1) with dialect groups, (2) with administrative regions, (3) without 83 
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regional clustering. We hypothesized that dialect groups capture regional clustering of infectious 84 

diseases mortality better than administrative regions or when no information on regional clustering 85 

is provided for all three diseases28.  86 

 87 

 88 

RESULTS 89 

Overall, our results show that for pertussis the models including dialect groups fitted the data better 90 

than the model containing only the municipality or the model containing the regional administrative 91 

borders. For smallpox, the best model was the model containing the administrative regions, whereas 92 

the control model, i.e., without regional clustering, was the best model for measles. Our results 93 

were not confounded by variation in municipalities’ surface area, population size, number of villages, 94 

or number of households, which were corrected for in all of our models. Neither were they linked 95 

to spatial autocorrelation, which was also controlled for in all of our models.  96 

 97 

Smallpox  98 

On average, 3.6% (±0.1SE) of the total deaths in each municipality were due to smallpox (figures 2a, 99 

3a, table S1). As we found no spatial autocorrelation (Moran’s I<0.05), the importance of spatial 100 

distance between municipalities in smallpox mortality was low and hence we did not include any 101 

PCNM variable in the model (see Methods for details). The results of the model selection indicated 102 

that administrative regions clustered smallpox mortality better than the other models: the model 103 

including administrative regions was a better fit than the control model containing only municipality 104 

(ΔAIC=14.95), and the model containing dialect groups (ΔAIC=2.46, tables 1,  S2). 105 

 106 

Pertussis 107 
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On average, 3.9% (±0.2SE) of deaths were due to pertussis (figures 2b, 3b, table S1). Controlling for 108 

the spatial autocorrelation required the fit of four PCNM vectors thereby indicating a strong 109 

importance of distance in mortality patterns. Our results show strong support for dialect groups to 110 

cluster pertussis mortality at the regional scale. Indeed, the model including dialect groups fitted the 111 

data better than the control model including only municipality (ΔAIC=37.32) and the model including 112 

the administrative regions (ΔAIC=28.74, tables 2, S3).  113 

 114 

Measles 115 

On average, 2.1% (±0.1SE) of total deaths occurring in a municipality were due to measles (figure 116 

2c, 3c, table S1). Models required the fit of two PCNM variables to account for the autocorrelation 117 

due to the distance between municipalities. Results of the model selection indicate that among the 118 

set of models fitted, the control model containing only municipality fitted the data slightly better 119 

than the model including administrative regions (ΔAIC=1.89) and the model containing dialect 120 

groups (ΔAIC=2.18, tables 3, S4), thereby indicating that all three models fitted the data almost 121 

equally well.  122 

 123 

DISCUSSION 124 

Social interactions have a strong impact on epidemiological dynamics, especially for pathogens 125 

directly transmitted between hosts of the same species. However, the interplay between social 126 

dynamics and epidemiological patterns has often been documented only at a local scale (within 127 

groups) but less at the regional one (between groups). The reason for the lack of studies on the 128 

regional scale is, at least partly, due to the difficulty of identifying the regional social structure. Here 129 

we tested in a pre-industrial human population from Finland whether we could grasp the regional 130 

differences in the mortality from childhood infectious diseases using dialect groups. We selected 131 

three infectious diseases which are directly transmitted from person to person (through direct 132 
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contact or airborne droplets) and were leading causes of mortality in children under 15 years old15,40. 133 

We expected a regional structure to exist for these epidemics as previous studies have documented 134 

variation in the spatial distribution of mortality for each disease at the locale.g. 12,15, regional44–48 and 135 

even at the country scale49. 136 

 Contrary to our predictions, our results do not support the hypothesis that regional social 137 

clustering may generally be grasped by linguistic variation but rather highlight disease-specific 138 

patterns. Our study adds to previous studies by documenting the regional spatial distribution of 139 

childhood infectious diseases and its variation between diseases. Acknowledging such variation 140 

emphasizes the need to identify the relevant spatial scale when studying epidemics and can be helpful 141 

when planning public health interventions32.  142 

 Overall, our ability to compare our results to other studies on regional clustering is limited. 143 

Although spatial structuring of epidemics has been investigated previously, the scale of spatial 144 

clustering, the methodology, the population, and the factors included in the models varied between 145 

studies26,50,51, thereby preventing the identification of the most relevant scale of regional structuring 146 

of epidemics. For instance, although Fridlizius and Ohlsson46 compared the epidemics of smallpox, 147 

pertussis and measles in a similar period in historical Sweden (1750-1800) and reported variation 148 

between regions, they did not investigate which factors could mediate it. Similarly, Ketola et al.15 149 

found that several local spatial factors (e.g., the number of households or villages in the municipality) 150 

were linked to the spatial variation in childhood mortality from smallpox, pertussis, and measles, but 151 

this study did not study the regional structuring of mortality patterns. More importantly, studies 152 

other than ours investigating which variables best explain the the spatial variation of infectious 153 

diseases are lacking, thereby precluding the comparison and generalization of our results to other 154 

populations. 155 

 As we study mortality from different pathogens in the same population, variation in regional 156 

spatial structuring is likely to be linked to the characteristics of the pathogen. These differences 157 
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between pathogens can result from different processes, in particular variation in transmission or 158 

outcome of an infection52. The outcomes of infection encompass the risk of individuals dying from 159 

an infection and can be measured by the case fatality rate (the proportion of cases of a specified 160 

condition that are fatal within a specified time)53. Comparing variation in transmission and outcomes 161 

of infection across regions would therefore provide valuable insights to decipher the contributions 162 

of these processes and potential mediators to our results. However, this approach is beyond the 163 

scope of this study, and we will here only discuss putative mediators of our results for each disease. 164 

Measles mortality was better explained by the model including neither of the regional 165 

clustering variables and the difference of fit between models was small, thereby indicating that 166 

measles mortality was not strongly regionally structured. As measles is highly contagious 167 

(R0=12-14)54, a measles epidemic outbreak may contaminate the entire country, which will 168 

subsequently lead to limited variation in the relative total death toll of measles between regions. 169 

However, spatial variation in the spread and impact of measles may still exist, but would require a 170 

study of the spatial spread, such as traveling waves, of the disease to be detected see 55 for an example.  171 

Surprisingly, the model with administrative regions was a better fit to smallpox data than 172 

those including dialect groups. However, the difference in fit between the model with administrative 173 

regions and dialect groups was quite small, which indicates more broadly a regional structuring of 174 

smallpox epidemics. One possible hypothesis is that the smallpox vaccination campaign in Finland 175 

may have been linked to the administrative structure of Finland, which could have let to smallpox 176 

mortality patterns following Finnish regional divisions. Smallpox vaccinations began in Finland in 177 

1802, and by 1825, the country was divided into vaccination districts56,57. Although detailed 178 

comparison of vaccination coverage between regions during our study period is currently lacking56,57, 179 

a previous study examining a subset of Finnish parishes (1837-1899) highlighted variation in 180 

vaccination coverage between parishes41.  181 
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Our hypothesis that linguistic variation is a relevant proxy to structure variation in mortality 182 

was supported for pertussis. Studies focusing only on transmission (e.g. in measles27, smallpox45 or 183 

influenza58) successfully managed to explain the spatio-temporal dynamics of infectious diseases, 184 

thereby suggesting that variation in transmission patterns may mediate this result. This interpretation 185 

is also in line with studies on the same period and area: indeed Ketola et al.15 found that the factors 186 

associated with disease spread (e.g., population density, and sub structuring of the population to 187 

villages and households) explained the local spatial distribution of mortality from infectious diseases. 188 

This could indicate that linguistic areas may represent a contact network through which infections 189 

could spread. Furthermore, a key difference between pertussis and the other two infections, is that 190 

pertussis is to a large extent transmitted by teens and adults because of waning immunity after 191 

natural infection59,60. Conversely, measles and smallpox mostly occur in children under 5 years and 192 

confer long-lasting immunity39. As older individuals are more likely to move across Finland, their 193 

movements may lead to regional scale spatial structuring of epidemics from pertussis whereas local 194 

spatial structure may be more important for the other diseases studied. In addition to variation in 195 

transmission, our results could be linked to factors specific to each dialect area and thereby being 196 

driven by differences in mortality rates from infections between dialect regions. Indeed, some group 197 

characteristics (e.g., variation in environmental conditions, food resources, population 198 

characteristics such as density, genetics or cultural dimensions), may shape the variation in mortality 199 

from pertussis61,62. For instance, a study focusing on Finnish dialect groups and other cultural (e.g., 200 

presence of slash-and-burn agriculture, chimneyless huts) and environmental features (e.g., 201 

percentage of land area covered by lakes or clay soil) identified a correlation between differences in 202 

dialects and differences in cultural traits38. However, studies investigating the correlation between 203 

dialect areas and ecological or cultural variables are currently lacking and remain to be explored.  204 

Overall, the strong variation of regional structuring between diseases highlights the need for 205 

comparative studies to deepen our understanding of factors linked to spatial structuring. Therefore, 206 
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future studies could build on this work to closely investigate the regional structuring of similar 207 

diseases in other populations and investigate whether some specific characteristics of these areas 208 

may impact survival from infectious diseases. 209 

  210 
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The study dataset is limited to a specific period and location, which limits the generalisation of our 228 

findings to other populations. Furthermore, as we the study the total mortality over a period of 50 229 

years, it is not possible to study the factors underpinnings our results.   230 

Jo
urn

al 
Pre-

pro
of



Page 12 of 28 
 

ACKNOWLEDGMENTS  231 

We thank the funding from NordForsk (104910), the NetResilience consortium funded by the 232 

Strategic Research Council at the Academy of Finland (345183), the Finnish Cultural Foundation, 233 

the Ella & Georg Ehrnrooth Foundation, the Turku Collegium for Science, Medicine and Technology, 234 

the Kone Foundation, the European Research Council (KinSocieties, ERC-2022-ADG, number 235 

101098266), the Turku Institute for Advanced Studies and the Human Diversity consortium, Profi7 236 

programme by the Research Council of Finland (grant 352727). We also thank the Genealogical 237 

Society of Finland for providing access to the data and to the volunteers who digitised the data from 238 

church records and two anonymous reviewers for their comments.  239 

 240 

AUTHOR CONTRIBUTIONS 241 

Conceptualization: M.B.; Resources: M.B., T.H., T.K., V.L., O.V.; Data curation: A.N., Statistical 242 

analyses: A.N.; Writing-original draft: A.N.; Writing-review and editing: M.B, T.H., T.K., V.L., A.N., 243 

O.V., Supervision: M.B., V.L. All authors were responsible for the final version of the manuscript.  244 

 245 

DECLARATION OF INTEREST 246 

The authors declare no competing interests.  247 

  248 

Jo
urn

al 
Pre-

pro
of



Page 13 of 28 
 

FIGURES AND SCHEME LEGENDS 249 

Figure 1. Maps of historical Finland divided into (a) eight administrative regions in 1831 250 

and (b) fourteen dialect groups of the Finnish language, as identified by Honkola et al (2018) 251 

for municipalities included in the analyses (n=215). Municipalities in white were excluded from the 252 

analyses because they represent transitional dialect areas, Swedish-speaking or Saami-speaking areas 253 

or due to incomplete data coverage. 254 

Figure 2. Proportion of total deaths owing to (a) smallpox; (b) pertussis and (c) 255 

measles in each municipality (n=215). 256 

Figure 3. Averaged proportion of total deaths owing to (a) smallpox; (b) pertussis and 257 

(c) measles in each dialect group (n=14).  258 

  259 
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TABLES 260 

Table 1. Summary of the best a priori models on the proportion of deaths in each 261 

municipality (n=215) due to smallpox including the total number of estimable parameters (K), 262 

the log-likelihood (LogLik), AIC differences relative to the minimum value in the model set (ΔAIC), 263 

the Akaike weight (wi), and the coefficient of determination of the model (R2). See Methods for 264 

details on each analysis and associate set of candidate models, and the Supplements for the model 265 

estimates of each variable (table S2). 266 

Models K Log Lik ΔAIC wi R2  

Control + Administrative Region 7 -1185.2 0.00 0.77 0.0033 

Control + Dialect Group 7 -1186.5 2.46 0.23 0.0028 

Control 6 -1193.8 14.95 0.00 4.00E-04 

 267 

Table 2. Summary of the best a priori models on the proportion of deaths in each 268 

municipality (n=215) due to pertussis including the total number of estimable parameters (K), 269 

the log-likelihood (LogLik), AIC differences relative to the minimum value in the model set (ΔAIC), 270 

the Akaike weight (wi), and the coefficient of determination of the model (R2). See Methods for 271 

details on each analysis and associate set of candidate models, and the Supplements for the model 272 

estimates of each variable (tables S3). 273 

Models K Log Lik ΔAIC wi R2 

Control + Dialect Group 11 -1163.6 0 1 0.01 

Control + Administrative Region 11 -1178 28.74 0 0.0058 

Control 10 -1183.4 37.32 0 0.004 

 274 

 275 

Table 3. Summary of the best a priori models on the proportion of deaths in each 276 

municipality (n=215) due to measles including the total number of estimable parameters (K), 277 

the log-likelihood (LogLik), AIC differences relative to the minimum value in the model set (ΔAIC), 278 

the Akaike weight (wi), and the coefficient of determination of the model (R2). See Methods for 279 
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details on each analysis and associate set of candidate models, and the Supplements for the model 280 

estimates of each variable (tables S4). 281 

Models K Log Lik ΔAIC wi R2 

Control 8 -1006.5 0 0.58 0.001 

Control + Administrative Region 9 -1006.4 1.89 0.23 0.0011 

Control + Dialect Group 9 -1006.5 2.18 0.20 1.00E-03 

  282 
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STAR METHODS  283 

STUDY POPULATION 284 

We combined two previously published datasets to investigate whether the spatial variation in 285 

mortality to infectious diseases at the regional scale could be explained by the dialect groups. The 286 

first dataset documents the mortality owing to smallpox, pertussis and measles across 19th century 287 

Finland15 and the second presents the dialect groups of Finnish38,43. As these datasets have been 288 

described and analysed in detail elsewhere, we will only summarise them briefly here.  289 

 The mortality dataset was a subset from a large demographic dataset on historical Finnish 290 

populations used previously in Ketola et al.15 and in Briga et al.40,63. Since 1749, each parish was 291 

obliged by law to document all births, deaths, causes of death, marriages and movements between 292 

parishes in the whole country64,65. The original parish records have been digitized by the Genealogical 293 

Society of Finland and are available at http://hiski.genealogia.fi/historia/indexe.htm. For each 294 

deceased, the church record included information on the date of death, the cause of death, the date 295 

of burial, the identity of the deceased and the parish of residence (hereafter referred to as 296 

Municipality).  297 

In our study, we focused on three infectious diseases, smallpox, pertussis and measles, as 298 

their diagnosis is generally reliable due to distinctive symptoms15,47. However, the church records 299 

had a variety of ways how these diseases were registered in the records. Following Vuorinen66, two 300 

authors (M.B. and T.K.) independently identified the causes of death (>50,000 different causes in the 301 

initial church records from the Genealogical Society of Finland) by combining typographical variants, 302 

abbreviations and synonyms of diseases in the different languages used (Finnish, German and 303 

Swedish) and obtained the same classification (data not shown). We limited the study period 304 

between 1800 and 1850 in order to maximise the number of municipalities that had records every 305 

year15. Only municipalities with at least one death documented in each year of the study were kept 306 

in the study dataset. Our study period is set before the spread of industrialism, urbanisation, the 307 
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transition to reduced birth and mortality rates. Vaccination against smallpox started in 1802 in 308 

Finland and access to modern health care started to take place in the late 19th century67. The study 309 

populations mostly depended on farming for their livelihood and were supplemented with fishing in 310 

the coastal areas. Regional variation across different dimensions has been documented, including in 311 

environmental and ecological conditions38,68,69, genetic structure70, household structure71,72, cultural 312 

practices73 or economic conditions74,75. Overall, the standard of living was low with both famines and 313 

diseases common48. Population reconstructions estimated an increase in the Finnish population from 314 

1 million to 1.5 million over the study period (1800-1850)76. 315 

During this period, municipalities located above the Arctic Circle were mostly inhabited by 316 

Saami, who were mostly depending on reindeer herding, fishing and hunting for their livelihood. As 317 

these populations spoke Saami languages77, these municipalities were excluded from the study78. 318 

When different parishes were part of a larger town, they were grouped to represent the same 319 

administrative unit (i.e., Turku, Viipuri, Helsinki, Heinola, Jyväskylä, Kuopio and Sortavala). 320 

Additionally, we used information on the demographic conditions of each municipality (population 321 

size, number of villages, number of households and municipality surface area) to control for their 322 

documented effect on disease dynamics15.  323 

 The dialect group data used in this study is from Honkola et al.38. The initial linguistic data 324 

were extracted from the Dialect Atlas of Finnish, which represents linguistic variation of the Finnish 325 

language in each Finnish-speaking municipality in the beginning of the 20th century79. The digitised 326 

atlas is archived in the Fairdata-service80 and a modified version is available in Santaharju et al.81. 327 

Using an analytical framework from population genetics, Honkola et al.38 clustered the linguistic 328 

variation between 471 municipalities into 14 dialect groups. Each municipality obtained a set of 329 

membership coefficients (a value of Inferred Cluster (IC) ranging from 0 to 1) to each dialect group 330 

which can be interpreted as a percentage of membership to each dialect group38,43. Following 331 

Honkola et al.38, we only included municipalities where the IC-value was above 0.75 (a municipality 332 
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dialect with an IC value of at least 0.75 to one specific dialect) in order to have reliably distinct 333 

dialect groups. Transitional areas between dialect groups were thus excluded from the dataset. 334 

Additionally, as the Dialect Atlas focuses on Finnish dialect data, the Swedish speaking municipalities 335 

were excluded from our study (western and southern coast of Finland). Honkola et al.38 also 336 

contained data on historical administrative borders (national, bishopric and provincial borders) from 337 

ca. year 1250 to 1895. The provincial borders usually divided Finland into four or more 338 

administrative areas, whereas there were four or fewer bishopric areas. To capture the regional 339 

level of the administrative areas, we decided to use provincial borders from 1831 in our study. It 340 

divided Finland into eight provinces (referred to as regions in this study) and matched with the time 341 

period of the mortality dataset (the next change in provincial divisions took place in the early 20th 342 

century)82.  343 

When merging the two sources, we only included municipalities which had information on 344 

both mortality and the dialect group. We obtained a dataset comprising 215 municipalities divided 345 

into 14 dialect groups and 8 administrative regions (Figure 1). It contained a total of 890,684 346 

registered deaths of which 39,066 were due to pertussis (4.4% of all registered deaths), 33,697 to 347 

smallpox (3.8%) and 19,621 to measles (2.2%). 348 

 349 

QUANTIFICATION AND STATISTICAL ANALYSIS 350 

We tested which model would best explain variation in mortality from three different infectious 351 

diseases in Finland in 1800-1850. The dependent variable was the proportion of deaths due to a 352 

specific disease per municipality relative to the total number of deaths recorded in this municipality: 353 

it was treated as a binomial factor (deaths due to a specific disease vs all other causes of deaths). 354 

We fitted separate models on each disease (smallpox, pertussis and measles), as the relevance of 355 

dialect groups to cluster infectious disease mortality risk may vary between infections. We fitted 356 

Generalised Linear Mixed Models (GLMMs) with a binomial error structure and a logit link function. 357 
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As we did not focus on temporal dynamics here (see Briga et al.63 for an example), time dependency 358 

was not explicitly modelled and our estimates refer to average risks over the 50-year period 359 

(following Ketola et al.15).  360 

For each disease, we considered a set of 3 models: (1) a control model, Control, without 361 

information about regional clustering. This model tested if the municipality-wise variation in 362 

mortality could be explained only with information about demographic characteristics of each 363 

municipality (see details below), the spatial autocorrelation components when needed and the 364 

random term Municipality, (2) a model testing the relevance of administrative areas where 365 

Municipality was nested within the administrative region: Control + Municipality/Region, (3) a model 366 

testing the relevance of dialect groups where the Municipality was nested within the dialect group: 367 

Control + Municipality/Dialect group.  368 

Each model included the following control variables. To avoid regional clusters reflecting 369 

municipality-level demographic characteristics, we included municipality population size, number of 370 

villages, number of households and municipality area as fixed factors in all models documented in 371 

Ketola et al.15 and municipality as a random intercept to account for the potential dependency of 372 

deaths occurring in the same municipality. All continuous variables were standardised with a mean 373 

of zero and a standard deviation of one.  374 

 Following Ketola et al.15, when model residuals indicated spatial autocorrelation (Moran’s I 375 

p<0.05, package ape)83, we corrected it using the PCNM approach84 as implemented in the package 376 

vegan85. This method consists of sequentially adding to a statistical model a number of fixed 377 

covariates which grasp the spatial autocorrelation structures and reran this model until no spatial 378 

autocorrelation could be detected in the model residuals (Moran’s I p<0.05). The PCNM approach 379 

is commonly used in ecology and epidemiology to correct for autocorrelation structures and its 380 

robustness has been confirmed by simulations86. For each disease, we initially ran a model including 381 
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only the control variables to determine the PCNM variables necessary. In our models, we initially 382 

obtained 115 PCNM variables and sequentially added a model-specific number of variables until 383 

there was no further spatial autocorrelation (see Results for details). The distribution of model 384 

residuals was checked with the R package DHARMa87 and it fulfilled the requirements of 385 

homoscedasticity and was without influential datapoints. 386 

 After defining for each disease the PNCM variables required to correct for spatial auto-387 

correlation, we used AIC model selection techniques (R package MuMIn)88 and an a priori model 388 

set corresponding to the different hypotheses tested (see above). These models were ranked 389 

according to their goodness-of-fit to the data based on the Akaike Information Criterion (AICc)89–390 

91. The difference in AIC (ΔAIC) between the model with the lowest AIC (considered as the best 391 

model) and the other models provides a measure of how much more likely the best model is than 392 

the other models. Following Symonds and Moussalli91 and Burnham et al.92, a difference in ΔAIC 393 

values above 2 indicates a difference in fit between models. For each fixed variable, we calculated 394 

the 95% confidence interval of the estimate (CI95%) to investigate the importance of its effect. When 395 

the CI95% overlaps zero, it indicates that the variable is not systematically associated with a higher 396 

or lower risk of dying from the disease investigated. For each model, we calculated the proportion 397 

of variance explained (R2, the coefficient of determination) with the package partR293. All statistical 398 

analyses were conducted on R software v.4.2.194 using generalized linear mixed effects models 399 

(GLMMs) function glmer in the package lme495.  400 

  401 
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SUPPLEMENTAL INFORMATION TITLES AND LEGENDS 402 

Table S1. Descriptive statistics of dialect groups. Related to Figure 1.  403 

Table S2. Proportion of total deaths due to smallpox for each municipality (n=215): 404 

averaged estimates and their 95% confidence intervals of the models including (a) municipality; (b) 405 

municipality and regions; (c) municipality and dialect groups as random factors. Estimates correspond 406 

to z-standardised values. See Methods and Table 1 for details of the model selection results. 407 

Variables with a 95% confidence interval not including 0 are highlighted in bold. Related to Table1. 408 

Table S3. Proportion of total deaths due to pertussis for each municipality (n=215): 409 

averaged estimates and their 95% confidence intervals of the models including (a) municipality; (b) 410 

municipality and regions; (c) municipality and dialect groups as random factors. Estimates correspond 411 

to z-standardised values. See Methods and Table 1 for details of the model selection results. 412 

Variables with a 95% confidence interval not including 0 are highlighted in bold. Related to Table 2. 413 

Table S4. Proportion of total deaths due to measles for each municipality (n=215): 414 

averaged estimates and their 95% confidence intervals of the models including (a) municipality; (b) 415 

municipality and regions; (c) municipality and dialect groups as random factors. Estimates correspond 416 

to z-standardised values. See Methods and Table 1 for details of the model selection results. 417 

Variables with a 95% confidence interval not including 0 are highlighted in bold. Related to Table 3. 418 

  419 
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RESEARCH HIGHLIGHTS 

- The regional structure of diseases is critical to understand their dynamics 

- Using dialect groups instead of administrative regions may be a better proxy 

- We analysed mortality records from Finland (1800-1850) for 3 infectious diseases 

- The best proxy was dialect for pertussis, regions for smallpox, none for measles 
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Key resources table 

REAGENT or RESOURCE SOURCE IDENTIFIER 

Deposited data 

Data OSF doi.org/10.17605/OSF.IO/C76DQ 

Code OSF doi.org/10.17605/OSF.IO/C76DQ 

Software and algorithms 

R software v4.2.1 R Core Team https://cran.r-project.org/ 
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